文章编号: 0253-2239(2004)01-5-6

用雅可比-傅里叶矩进行图像描述*

任海萍1 平子良2 博午日亘3 盛云龙4 陈盛祖1 吴文凯1

1 中国协和医科大学中国医学科学院肿瘤医院核医学科,北京 100021,

2 内蒙古师范大学物理系,呼和浩特 010022

3 北京大学数学学院,北京 100871

4 加拿大 Laval 大学物理系, 魁北克, GIK 7P4

摘要: 提出了雅可比-傅里叶矩,它是用雅可比多项式作为径向函数,用傅里叶因子作为角向函数构造而成的,是 广义正交傅里叶-梅林矩。经过归一化处理后的雅克比-傅立叶矩具有平移、尺度、旋转、灰度多畸不变性。从归一 化图像重建误差、噪声灵敏度等方面对雅可比-傅里叶矩的图像描述能力进行了研究,结果显示雅可比-傅里叶矩 在各种参量选择的情况下,具有良好的图像描述和抗噪声能力,是一个优良的图像特征。以前的研究多为单纯构 建某一个函数,而现在将其扩展为构建一个函数族,开阔了矩描述量的研究视野。 关键词: 信息光学;图像处理;正交矩;图像描述 中图分类号:O438 文献标识码:A

Image Description with Jacobi-Fourier Moments

Ren Haiping¹ Ping Ziliang² Bo Wurigen³ Sheng Yunlong⁴ Chen Shengzu¹ Wu Wenkai¹

(1 Cancer Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021

2 Department of Physics, Inner Mongolia Normal University, Huhhot 010022

3 Mathematics Institute, Beijing University, Beijing 100871

4 Department of Physics, Laval University, Quebec, GIK 7P4, Canada

(Received 1 November 2002; revised 20 February 2003)

Abstruct: Jacobi-Fourier moments (JFM), which choose Jacobi polynomial as radial function and Fourier factor as angle function are proposed. The new moments are generalized Orthogonal Fourier-Mellin moments. Jacobi-Fourier moments can be normalized to be invariant for shifting, scaling, rotation and intensity distortion of an image. The normalized image reconstruction error (NIRE) and noise sensitivity of Jacobi-Fourier moments are also investigated. Results show that Jacobi-Fourier moments are good image feathers with strong image description ability and noise resistance power. Compared with other researches, the research view is extended from reconstructing a certain function to reconstructing a function family.

Key words: information optics; image processing; orthogonal moment; image description

1 引 言

1

模式识别中的一个关键问题就是如何获得一种

* 国家自然科学基金(60262001)、内蒙古自然科学基金 (201301)资助课题。

E-mail: haipingren@163.com 收稿日期:2002-11-01;收到修改稿日期:2003-02-20

Т

有效的图像描述量,用一个很小的数据集合代表图 像。同时希望该图像描述量对于图像的各种畸变不 敏感。矩不变量是一种高度浓缩的图像特征,具有 平移、尺度、旋转以及灰度不变性,因此矩和矩函数 被广泛用于图像的模式识别、图像分类、目标识别和 场景分析^[1]。

Hu^[2]在1961年首先提出矩不变量的概念,并

将几何矩用于图像描述。但是,低阶几何矩包含图 像细节信息太少,而高阶几何矩容易受噪声的影响, 很难利用矩恢复图像。Teague 等^[3]提出用正交矩 解决如何用较少矩更好地描述图像的问题。 Sheng^[4]提出的正交傅里叶-梅林矩(Orthogonal Fourier-Mellin Moments,OFMM)在描述图像方面 优于泽尼克矩(Zernike Moments, ZM)等多种正交 不变矩。

本文提出用雅可比多项式作为径向多项式,用 傅里叶因子作为角向函数,来构造雅可比-傅里叶矩 (Jacobi-Fourier Moments, JFM)。正交傅里叶-梅 林矩的径向多项式是雅可比多项式的特例,即 p= q=2的情形。研究表明,使用其他参量组合的雅可 比多项式,依然可以获得与正交傅里叶-梅林矩同样 好的图像描述性质。

雅可比-傅里叶矩 2

2.1 定义

在极坐标系统 (r, θ) 中,定义函数系 $P_{m}(r, \theta)$ 包 括径向函数 $J_n(r)$ 和角向函数 $exp(im\theta)$ 两个部分: Р (1)

$$D_{nm}(r,\theta) = J_n \exp(jm\theta),$$

函数系 $P_{nm}(r,\theta)$ 在 0 $\leq r \leq 1$ 区间内必须是正交的

$$\int_{0}^{2\pi 1} P_{nm}(r,\theta) P_{kl}(r,\theta) r dr d\theta = \delta_{nmkl}, \qquad (2)$$

其中, δ_{nnkl} 为克罗内克(Kronecker)符号,r=1为在 特定情形下遇到物体的最大尺寸。极坐标系中根据 正交性理论,图像函数 $f(r,\theta)$ 可以按照函数系 $P_{nm}(r,\theta)$ 分解:

$$f(r,\theta) = \sum_{n=0}^{\infty} \sum_{m=-\infty}^{+\infty} \phi_{nm} J_n(r) \exp(jm\theta), \quad (3)$$

其中

$$\phi_{nm} = \int_{0}^{2\pi 1} \int_{0}^{1} f(r,\theta) J_n(r) \exp(-jm\theta) r dr d\theta, \quad (4)$$

定义 ϕ_{nm} 为雅可比-傅里叶矩。函数系 $J_n(r)$ 在 0 $\leq r$ ≤1区间内是正交的:

$$\int_{n} (r) J_{k}(r) r dr = \delta_{nk}, \qquad (5)$$

从雅可比多项式的定义下列各式成立:

$$\int_{0}^{1} G_n(r) G_m(r) w(r) \mathrm{d}r = b_n \delta_{nm}, \qquad (6)$$

其中

$$G_n(p,q,r) = \frac{n!(q-1)!}{(p+n-1)!} \times \sum_{s=0}^n (-1)^s \frac{(p+n+s-1)!}{(n-s)!s!(q+s-1)!} r^s,$$
(7)

$$b_n(p,q) = \frac{n! [(q-1)!]^2 (p-q+n)!}{(q+n-1)! (p+n-1)! (p+2n)},$$
(8)

$$w_n(r) = (1-r)^{p-q} r^{q-1}, \qquad (p-q > -1, q > 0), \qquad (9)$$

因此,当 $J_n(r) = \sqrt{\frac{w(r)}{b_n r}} G_n(r)$ 时,满足(5)式。也就是说,正交雅可比多项式可以作为径向多项式,通过选择 不同的 p,q 参量获得新的矩描述量。作为特例,对以下三种参量组合情况进行研究:

当
$$p = q = 2$$
 时, $J_n(2,2,r) = (-1)^n \sum_{s=0}^n (-1)^s \frac{(n+s+1)!}{(n-s)!s!(s+1)!} r^s$, (10)

当
$$p = 3, q = 2$$
 时 $J_n(3,2,r) = (-1)^n \sqrt{\frac{(1-r)(2n+3)}{(n+1)(n+2)}} \sum_{s=0}^n (-1)^s \frac{(n+s+2)!}{(n-s)!s!(s+1)!} r^s,$ (11)

当
$$p = q = 3$$
 时, $J_n(3,3,r) = (-1)^n \sqrt{(2n+3)r} \sum_{s=0}^n (-1)^s \frac{(n+s+2)!}{(n-s)!s!(s+2)!} r^s.$ (12)

事实上, J_n(2,2,r) 就是正交傅里叶-梅林矩的 径向多项式。因此,可以认为雅可比-傅里叶矩是正 交傅里叶─梅林矩的拓展。

径向函数的零点数目和位置代表该阶图像矩对 图像的抽样频率和抽样位置。图 1 为雅可比-傅里叶 矩的径向函数图像。不难看出,与泽尼克矩的径向多 项式不同^[4],所有的 $J_n(p,q,r)$ 在(0,1)区间内都有

n个零点,而且零点在此区间内的分布几乎是均匀 的,第一个零点达到或非常接近原点。同时, J_n(3,2,r) 在原点处多一个零点,J_n(3,3,r) 在 r=1 处多一个零点。也就是说,图像的中心和边缘 对于矩的贡献是完全相同的,而且,雅可比-傅里叶 矩对图像中心以及小图像的描述能力非常强。

Fig. 1 Radial polynomials $J_n(p,q,r)$ of JFM with n=0,1,2,9,10. (a) $J_n(2,2,r)$; (b) $J_n(3,2,r)$; (c) $J_n(3,3,r)$

2.2 归一化和多畸不变性

雅可比-傅里叶矩自身不是畸变不变量,但是归 一化之后,可获得平移、灰度、尺度、旋转不变性^[5]。 首先,计算图像一阶几何矩,并以其为坐标原点进行 坐标变换。在此坐标系中计算的所有矩都具有平移 不变性。其次,由于雅可比-傅里叶矩的角向函数为 $\exp(jm\theta)$,将图像旋转角度 φ 后,所有矩 Φ'_{nm} 都增加 相同的相位因子 $\exp(jm\varphi)$,雅可比-傅里叶矩的模 $|\Phi'_{nm}|$ 是旋转不变的。再者,计算训练集中每幅图 像的低阶傅里叶-梅林矩 M'_{10}/M'_{00} [4],选择确定值 M_{10}/M_{00} ,使之略小于 M'_{10}/M'_{00} 的最小值,计算每幅 图像的尺度和灰度畸变因子 k_i,g_i :

$$k_{i} = \left(\frac{M_{io}}{M_{oo}}\right) / \left(\frac{M_{io}}{M_{oo}}\right), \qquad (13)$$

$$g_{i} = \left[\left(\frac{M_{10}}{M_{00}} \right) \middle/ \left(\frac{M_{10}}{M_{00}} \right) \right]^{2} \cdot \frac{M_{00}}{M_{00}}, \qquad (14)$$

用(15)式、(16)式计算训练集中所有图像的 **Φ**_{nm},它 是尺度和灰度畸变不变的:

$$\phi_{nm}^{i} = \int_{0}^{2\pi^{e_{i}}} g_{i}f(r/k_{i},\theta) T_{n}(r/k_{i}) \exp(-jm\theta) r dr d\theta,$$
(15)

3 雅可比-傅里叶矩的实现和特性研究

3.1 图像重建和重建误差

根据正交完整函数系的理论,使用有限数目的 雅可比-傅里叶矩可以近似重建原图像函数 f(r, θ),所用项数越多,近似程度越高^[6,7]:

$$f_{\rm R}(r,\theta) \approx \sum_{n=0}^{N} \sum_{m=-M}^{M} \Phi_{nm} T_n(r) \exp(jm\theta), \quad (17)$$

其中 $f_{R}(r,\theta)$ 为重建的图像。

对固定图像进行重建,归一化图像重建误差定 义为

$$\epsilon^{2} = \frac{\int \int [f(x,y) - f_{R}(x,y)]^{2} dx dy}{\int \int f^{2}(x,y) dx dy}, \quad (18)$$

使用雅可比-傅里叶矩可成功实现 26 个英文字 母的图像重建(图 2)。

Fig. 2 Reconstructed images of the 26 English alphabet letters with 64 JFM, with m and n=0,1,2,3,4,5,6 对字母E使用雅可比-傅里叶矩重建图像并分 析重建误差。实验图像有大图像E6和小图像E3

Fig. 3 Reconstructed image of "E6" with (a) p=q=2;
(b) p=3,q=2; (c) p=q=3. From top left to bottom right: N=M=2,3,5,7,10,12,15,17,20

光

Fig. 4 NIRE for a deterministic image (letter E) with JFM

Fig. 5 Statistical NIRE ē² of the JFM (64 * 64),E3 的字母大小是 E6 的一半。从重建图 像可以看出,使用较少项数的雅可比-傅里叶矩就可

以很好地重建出原始图像(图 3,图 4),而且三种雅 可比-傅里叶矩的重建视觉效果几近相同。重建误 差对比(图 5)显示归一化图像重建误差(NIRE)是 最高阶数的函数,随着阶数升高,归一化图像重建误 差下降。

考虑均一随机过程(广义静止)的图像 f(x,y), 均值为零。均一随机场的统计性归一化图像重建误 差定义为

$$\overline{\epsilon}^{2} = \frac{E\left\{ \iint_{-1}^{\infty} [f(x,y) - f_{R}(x,y)]^{2} dx dy \right\}}{E\left\{ \iint_{-1}^{1} [f(x,y)]^{2} dx dy \right\}}.$$
 (19)

图 5显示了统计性归一化图像重建误差是重建 过程中最高阶数的函数。

3.2 噪声灵敏度

假设图像 f(x,y) 是一个均一的随机场,均值 为零,而且叠加均值为 0,方差 σ² 为的白噪声。雅可 比-傅里叶矩的统计信噪比 R 可定义为

$$R_{nm} = \frac{\operatorname{var}\{(\boldsymbol{\Phi}_{nm})_f\}}{\operatorname{var}\{(\boldsymbol{\Phi}_{nm})_{\text{noise}}\}} = \frac{1}{\sigma^2} \operatorname{var}\{(\boldsymbol{\Phi}_{nm})_f\}, \quad (20)$$

其中随机信号 f(x,y) 的雅可比-傅里叶矩(JFM)的 方差为

$$\operatorname{var}\{(\boldsymbol{\Phi}_{nm})_{f}\} = \int_{0}^{2\pi k} \int_{0}^{2\pi k} \int_{0}^{2\pi k} C_{ff}(x, y, u, v) Q_{n}(r) Q_{n}(\rho) \cos[m(\theta - \varphi)] r dr d\theta \rho d\rho d\phi, \qquad (21)$$

$$C_{ff}(x,y,u,v) = C_{ff}(0,0) \exp\{-\alpha [(x-u)^2 + (y-v)^2]^{1/2}\}, \qquad (22)$$

$$C_{ff}(0,0) = E\{[f(x,y)]^2\} = \frac{1}{\pi k^2} \int_{0}^{2\pi k} [f(r,\theta)]^2 r dr d\theta, \qquad (23)$$

其中 α 为实验性参量,k为图像的尺度因子,E{•}为数学期望。

图 6 显示了三种雅可比-傅里叶矩的统计性信噪比几乎相同,它是径向函数零的个数的函数。随着 m 和 零的数目的增加,统计性信噪比降低。

使用上述噪声图像的有限阶数矩来重建噪声图像,则统计性归一化图像重建误差(statistical NIRE)为

$$\overline{\varepsilon}_{n}^{2}(N,M) = E\left\{ \iint_{-1}^{2} [f(x,y) - f_{R}(x,y) - n_{R}(x,y)]^{2} dx dy \right\} / E\left\{ \iint_{-1}^{1} [f(x,y)]^{2} dx dy \right\} = \overline{\varepsilon}^{2}(N,M) + E\left\{ \iint_{0}^{2\pi 1} [n_{R}(r,\theta)]^{2} r dr d\theta \right\} / E\left\{ f(r,\theta)]^{2} r dr d\theta \right\} = \overline{\varepsilon}^{-2}(N,M) + \frac{N_{\text{total}}}{\pi R_{\text{input}}},$$
(24)

其中 N_{total} 为在重建中使用的矩的总数, $R_{\text{input}} = k^2 C_{ff}(0,0)/\sigma^2$ 。

重建后的统计性归一化图像重建误差 毫,与矩的数

图 7 显示了使用雅可比-傅里叶矩对噪声图像

目的关系(k=1, 0.5; $R_{input}=100$)。

对固定图像叠加均值为 0,方差为 o² 的白噪声, 得到噪声图像 f(x,y)。使用 f(x,y)的有限阶数雅 可比-傅里叶矩来重建噪声图像,归一化图像重建误

Fig. 6 Statistical SNR of the JFM with constant

Fig. 7 Statistical normalized noisy-image reconstruction error $\overline{\epsilon}_n^2$ with input $R_{input} = 100$

差为

$$\epsilon_n^2(N,M) = \epsilon^2(N,M) + \frac{N_{\text{total}}}{\pi R_{\text{input}}},$$
 (25)

图 8 显示了使用雅可比-傅里叶矩对叠加了均 值为零的高斯噪声的 E3 的重建的结果,图 9 显示 了对噪声图像的重建误差,结果基本与图 7 显示的 结论相似。图 10 显示了使用雅可比-傅里叶矩对信 嗓比不同的噪声图像的重建结果。信嗓比分别为

Fig. 8 Reconstructed image of noisy-image "E3" (the input SNR=100). From top left to bottom right: N=M=2,3,5,7,10,12,15,17,20; (a) p=q=2; (b) p=3,q=2; (c) p=q=3

9

Fig. 9 Normalized noisy-image reconstruction error for deterministic objects E6 and E3 with additive noise and $R_{input} = 100$

Fig. 10 Reconstructed images of noisy images with JFM.
(a) original noisy images; from left to right, the R_{input}=1 (no noise), 10, 10, 1, 0. 1,
(b) reconstructed images with P = q = 2,
(c) reconstructed images with p = 3, q = 2,
(d) reconstructed images with p=q=3

100,10,1,0.1 时,图像都可以很好的重建,说明三 者都有很强的抗噪声能力。

结论 本文将正交傅里叶-梅林矩进行了拓展,提出 了广义的基于径向雅可比多项式的雅可比-傅里叶 矩。同时,给出了由正交多项式构造新的矩描述量 的一般性方法。分析了雅可比-傅里叶矩对于多种 扭曲图像的重建误差、噪声敏感性,并进行了三种不 同参量情形的对比。结果显示三者基本上具有相同 的图像描述能力。研究表明,雅可比-傅里叶矩在多 种参量选择的情况下,都具有很好的图像描述和抗 噪声能力,是一种优良的图像特征。

多考文献

1 Prokop R J, Reeves A P. A survey of moment-based techniques for unoccluded object representation and recognition. Graphical Models and Image Processing, 1992, 54(5):438~460

1 33

2 Hu M K. Visual pattern recognition by moment invariants.	Chebyshev-Fourier moments. J. Opt. Soc. Am. (A),
IEEE Trans Inf Theory, 1962, IT-8(2):179~187	2002, 19 (8):1748~1754
3 Teague M R. Image analysis via the general theory of	6 The C H, Chin R T. On image analysis by the methods of
moments. J. Opt. Soc. Am., 1980, 70(8):920~930	moments. IEEE Trans Pattern Anal Mach Intell, 1988,
4 Sheng Y L, Shen L X. Orthogonal Fourier-Mellin	10 (4):496~513
moments for invariant pattern recognition. J. Opt. Soc.	7 Liao S X, Pawlak M. On image analysis by moments. IEEE
Am. (A), 1994, $11(6)$:1748~1757	Trans Pattern Anal Mach Intell, 1996, 18(3):254~266

5 Ping Z L, Wu R G, Sheng Y L. Image description with

《光学学报》三级学科名称

1

** ** **

本刊要求所写的 4~6 个关键词中,头一个为该文的三级学科名称。现在本刊推荐使用下列三级学科名称。由于有些课题可能可以归人这个或那个学科,故选用时请注意着重文章的内容,使之课题与三级学科尽量切合。

Applied Optics	应用光学
Applied Optoelectronics	应用光电子学
Atmosphere Optics	大气光学
Biological Optics	生物光学
Film Optics	薄膜光学
Geometrical Optics (Imaging Optics)	几何光学(成像光学)
Guided Wave Optics (Fiber and Integrated Optics)	导波光学(光纤,集成光学)
Information Optics	信息光学
Laser Physics	激光物理
Laser Techniques	激光技术
Lasers	激光器
Luminescence	发光学
Nonlinear Optics	非线性光学
Ocean Optics	海洋光学
Optical Fiber Communication Technology	光纤通信技术
Optical Materials	光学材料
Optical Measurement	光学测量
Photochemistry	光化学
Physical Optics	物理光学
Plasma Physics	等离子体物理学
Quantum Optics	量子光学
Spectroscopy	光谱学
X-Ray Optics	X 射线光学